Отправьте статью сегодня! Журнал выйдет ..., печатный экземпляр отправим ...
Опубликовать статью

Молодой учёный

Язык программирования Python. Библиотеки Python

Информационные технологии
28.01.2021
1304
Поделиться
Библиографическое описание
Таршхоева, Ж. Т. Язык программирования Python. Библиотеки Python / Ж. Т. Таршхоева. — Текст : непосредственный // Молодой ученый. — 2021. — № 5 (347). — С. 20-21. — URL: https://moluch.ru/archive/347/78102/.


Язык программирования Python — это высокоуровневый и интерпретируемый язык программирования, который был создан Гвидо Ван Россумом в 1989 году и выпущен в 1991 году, которые « автоматизируют скучные вещи» (как выразилась одна популярная книга по изучению Python).

За последние несколько лет Python стал первоклассным языком в области разработки современного программного обеспечения, управления инфраструктурой, анализа данных и машинного обучения. Его используют в создании веб-приложений и управлении системами. Синтаксис Python разработан таким образом, чтобы он был читабельным и простым. Эта простота делает Python идеальным языком для обучения и позволяет новичкам быстро освоить его. В результате разработчики тратят больше времени на размышления о проблеме, которую они пытаются решить, и меньше времени на размышления о сложности языка или расшифровку кода, составленного другими. [2]

Ключевые слова: Python, библиотеки Python, синтаксис языка, Фреймворк, машинное обучение, анализ данных.

Python популярен и широко используется, о чем свидетельствуют высокие рейтинги в таких опросах, как индекс Tiobe и большое количество проектов GitHub, использующих Python. Python работает на всех основных операционных системах и платформах, а также на большинстве второстепенных. Многие основные библиотеки и API-сервисы имеют привязки Python или оболочки, позволяющие Python свободно взаимодействовать с этими сервисами или напрямую использовать эти библиотеки. [1]

Python может использоваться в различных отраслях промышленности. В 2014 году такие компании, как Nokia, IBM, Google и Disney, искали программистов с опытом работы на Python, чтобы помочь им в разработке веб-приложений и фреймворков; в этом отношении Python прекрасно сочетается с Django, который функционирует как базовая фреймворковая система, на которой строится Python. Python также позволяет программам создавать сценарии профессиональных веб-продуктов. От бэкэнда до фронтэнда разработки, полного стека и веб — опций. [5]

Библиотеки Python

Являясь одним из ведущих языков программирования, Python имеет много фреймворков (платформ для построения приложений) и библиотек, которыми можно воспользоваться. Библиотека языка программирования — это просто набор модулей и функций, которые облегчают некоторые специфические операции с использованием этого языка программирования. [4]

Итак, вот 7 основных библиотек для программирования на Python:

TensorFlow

Эта библиотека была разработана компанией Google в сотрудничестве с командой Brain Team. TensorFlow входит почти в каждое приложение Google для машинного обучения.

TensorFlow работает как вычислительная библиотека для написания новых алгоритмов, которые включают в себя большое количество тензорных операций, так как нейронные сети могут быть легко выражены в виде вычислительных графиков они могут быть реализованы с помощью TensorFlow в виде серии операций на тензорах. Тензоры — это N-мерные матрицы, представляющие ваши данные. [6]

Scikit-learn.

Это библиотека Python, связанная с NumPy и SciPy. Она считается одной из лучших библиотек для работы со сложными данными.

В этой библиотеке происходит много изменений. Одной из модификаций является функция перекрестной проверки, предоставляющая возможность использовать более одной метрики. Многие методы обучения, такие как логистическая регрессия, получили некоторые небольшие улучшения. [3]

Numpy

Numpy считается одной из самых популярных библиотек машинного обучения в Python.

TensorFlow и другие библиотеки используют Numpy для выполнения нескольких операций с тензорами. Интерфейс массива — это лучшая и самая важная особенность Numpy.

Keras

Keras — открытая нейросетевая библиотека, написанная на языке Python. Нацелена на оперативную работу с сетями глубокого обучения, при этом спроектирована так, чтобы быть компактной, модульной и расширяемой.

В дополнение к предоставлению более простого механизма для выражения нейронных сетей, Keras также предлагает некоторые из лучших функций для компиляции моделей, обработки наборов данных и визуализации графиков. На бэкэнде (сервере) Keras использует либо Theano, либо TensorFlow.

В связи с тем, что Keras создает вычислительный граф с помощью серверной инфраструктуры, а затем использует его для выполнения операций, он работает медленнее, чем другие библиотеки машинного обучения. Тем не менее, все модели в Keras являются портативными. [6]

PyTorch.

PyTorch — это крупнейшая библиотека машинного обучения, которая позволяет разработчикам выполнять тензорные вычисления с помощью ускорения графического процессора, создавать динамические вычислительные графики и автоматически вычислять градиенты. Кроме того, PyTorch предлагает богатые API для решения прикладных задач, связанных с нейронными сетями.

Эта библиотека машинного обучения основана на Torch, которая представляет собой машинную библиотеку с открытым исходным кодом, реализованную на языке Си с оболочкой в Lua.

Эта машинная библиотека на Python была представлена в 2017 году, и с момента своего создания библиотека набирает популярность и привлекает все большее число разработчиков машинного обучения. [5]

LightGBM

Gradient Boosting — это одна из лучших и наиболее популярных библиотек машинного обучения, которая помогает разработчикам создавать новые алгоритмы с использованием переопределенных элементарных моделей, а именно деревьев решений. Поэтому существуют специальные библиотеки, которые доступны для быстрой и эффективной реализации этого метода.

Эти библиотеки — LightGBM, XGBoost и CatBoost. Все эти библиотеки являются конкурентами, которые помогают в решении общей проблемы и могут быть использованы почти аналогичным образом.

SciPy

SciPy — это библиотека машинного обучения для разработчиков приложений и инженеров. Однако все равно нужно знать разницу между библиотекой SciPy и стеком SciPy. Библиотека SciPy содержит модули для оптимизации, линейной алгебры, интеграции и статистики.

Главная особенность библиотеки SciPy заключается в том, что она разрабатывается с использованием NumPy, и ее массив максимально использует NumPy. [3]

Кроме того, SciPy предоставляет все эффективные численные процедуры, такие как оптимизация, численное интегрирование и многие другие, используя свои специфические подмодули.

Все функции во всех подмодулях SciPy хорошо документированы.

Литература:

  1. Бизли, Дэвид М. Python. Подробный справочник, 4-е издание. — Перевод с английского. — СПб.: Символ-Плюс, 2010.
  2. Бизли, Дэвид М. Язык программирования Python. Справочник. — К.: ДиаСофт, 2010.
  3. Лейнингем ван Иван. Освой самостоятельно Python за 24 часа— М.: Вильямс.
  4. Лутц, Марк. Программирование на Python: — СПб.: Символ-Плюс, 2015
  5. Саммерфилд, Марк. Программирование на Python 3. Подробное руководство. — СПб.: Символ-Плюс, 2017.
  6. Электронный ресурс: https://habr.com/.
Можно быстро и просто опубликовать свою научную статью в журнале «Молодой Ученый». Сразу предоставляем препринт и справку о публикации.
Опубликовать статью
Ключевые слова
Python
библиотеки Python
синтаксис языка
Фреймворк
машинное обучение
анализ данных
Молодой учёный №5 (347) январь 2021 г.
Скачать часть журнала с этой статьей(стр. 20-21):
Часть 1 (стр. 1-83)
Расположение в файле:
стр. 1стр. 20-21стр. 83

Молодой учёный