В последнее время, в связи с реализацией компетентностного подхода, актуальным становится вопрос о поиске и научном обосновании средств и условий совершенствования профессиональной подготовки будущих учителей математики, призванной обеспечить развитие компетентностей учащихся.
Отметим, что если раньше говорили о формировании у будущих учителей профессиональных умений, то в рамках компетентностного подхода говорят о формировании профессиональной и других компетентностей (совокупности компетенций). Профессиональная компетентность включает в себя определенные профессиональные умения, а также способность успешно применять эти умения при осуществлении профессиональной деятельности и личностные качества педагога.
Под профессиональной компетентностью мы понимаем интегральную характеристику, определяющую способность учителя решать профессиональные проблемы и типичные профессиональные задачи, возникающие в реальной профессиональной деятельности, с использованием знаний, профессионального и жизненного опыта, ценностей и наклонностей. Она включает в себя предметную, психолого-педагогическую и методическую составляющие [3].
Рассматривая профессиональную подготовку будущих учителей математики, необходимо исходить из современного понимания профессиональной компетентности учителя, которая вытекает из его профессионального мастерства и уверенного владения предметом. В связи с этим специальному исследованию может быть подвергнута предметно-методическая компетентность, которая находится на стыке предметной и методической компетентности.
Под предметно-методической компетентностью учителя математики будем понимать профессиональную компетентность, которая выражена в практической готовности к осуществлению видов профессиональной деятельности, связанной с обучением математике в системе общего среднего образования, основанной на системе теоретических знаний.
Учитывая современные требования к подготовке учителя математики, к традиционным умениям (владение совокупностью знаний в области преподаваемого предмета; ориентация в современных исследованиях по предмету; применение теоретических знаний для решения математических задач; организация процесса обучения на уроке; владение методикой преподавания конкретного предмета; мотивирование процесса обучения; использование информационных и других технологий обучения; самостоятельное получение знаний; применение ценностных установок в процессе обучения) нужно добавить новые: умение выбирать или разрабатывать необходимую для конкретного образовательного процесса технологию; умение реализовывать компетентностный подход на уроках математики; умение работать (отбор, решение, конструирование) с компетентностными задачами и такое методическое умение, как объяснение учащимся способов решения компетентностных задач, а также применение таких задач на уроках.
Для формирования и проверки сформированности компетентностей необходимо разрабатывать специальные (отличные от традиционных) задания и задачи. Анализ литературы показал, что сейчас активно ведется работа в этом направлении, хотя разные авторы по-разному называют задания (задачи): компетентностные, контекстные, ситуационные, компетентностно-ориентированные), позволяющие проверять уровень сформированности различных компетенций. Мы в своем исследовании используем термин «компетентностные задачи», учитывая их целевое назначение в процессе обучения.
Под компетентностными задачами, рассматриваемыми при изучении математики, мы будем понимать задачи, целью решения которых является разрешение стандартной или нестандартной ситуации (предметной, межпредметной или практической по описанному в ней содержанию) посредством нахождения соответствующего способа решения с обязательным использованием математических знаний. Основной особенностью таких задач является получение познавательного результата для школьника и профессионально значимого результата для студента - будущего учителя математики.
Важными отличительными особенностями компетентностных задач от стандартных математических (предметных, межпредметных, прикладных) являются:
значимость (познавательная, профессиональная, общекультурная, социальная) получаемого результата, что обеспечивает познавательную мотивацию учащегося;
- условие задачи сформулировано как сюжет, ситуация или проблема, для разрешения которой необходимо использовать знания (из разных разделов основного предмета - математики, из другого предмета или из жизни) на которые нет явного указания в тексте задачи;
- информация и данные в задаче могут быть представлены в различной форме (рисунок, таблица, схема, диаграмма, график и т.д.), что потребует распознавания объектов;
- указание (явное или неявное) области применения результата, полученного при решении задачи.
Кроме выделенных четырех обязательных характеристических особенностей, компетентностные задачи обычно имеют следующие:
- по структуре эти задачи – нестандартные, т.е. в структуре задачи неопределенны некоторые из ее компонентов;
- наличие избыточных, недостающих или противоречивых данных в условии задачи, что приводит к объемной формулировке условия;
- наличие нескольких способов решения (различная степень рациональности), причем данные способы могут быть неизвестны учащимся, и их потребуется сконструировать.
Мы, вслед за О.В. Харитоновой [4], выделяем следующие типы компетентностных задач:
1. Предметные компетентностные задачи: в условии описана предметная ситуация, для решения которой требуется установление и использование широкого спектра связей математического содержания, изучаемого в разных разделах математики; в ходе анализа условия необходимо «считать» информацию, представленную в разных формах; сконструировать способ решения (путем объединения уже известных способов). Полученный результат обеспечивает познавательную значимость решения и может быть использован при решении других задач (заданий).
2. Межпредметные компетентностные задачи: в условии описана ситуация на языке одной из предметных областей с явным или неявным использованием языка другой предметной области. Для решения нужно применять знания из соответствующих областей, требуется исследование условия с точки зрения выделенных предметных областей, а также поиск недостающих данных, причем решение и ответ могут зависеть от исходных данных выбранных (найденных) учащимся.
3. Практические компетентностные задачи: в условии описана практическая ситуация, для разрешения которой, нужно применять не только знания из разных предметных областей (обязательно включающих математику), но и приобретенные из повседневного опыта учащихся. Данные в задаче, не должны быть оторваны от реальности (должны соответствовать действительности, например цены, размеры дома и т.д.). Полученный результат должен быть значим для учащихся, т.е. указана его область применения.
Часто компетентностные задачи понимают только как задачи прикладного или межпредметного характера, в которых для разрешения некой практической ситуации нужно использовать знания того или иного (или нескольких одновременно) предмета. Мы считаем, что важным является применение и предметных компетентностных задач, где учащиеся учатся отбирать необходимые для решения знания из разных разделов в рамках одной предметной области (математика), причем на применение этих знаний не должно быть явного указания в тексте задачи.
Мы выделили четыре уровня сложности компетентностных задач на основе критериев, которые были сформулированы (по сложности отбора базы знаний и конструирования способа решения) в результате личного опыта (при конструировании компетентностных задач) и, учитывая проблемы, которые возникали у студентов при решении таких задач. На схеме 1 показана структура системы компетентностных задач.
В ходе
исследования нами была составлена система компетентностных задач в
рамках курса по выбору для студентов-математиков. Целостность системе
придает цель ее использования – формирование компетентности
учащихся.
Приведем пример предметной компетентностной задачи:
1. На рисунке 1 изображен многогранник. Известно, что площади
боковых граней, образующих прямой угол (),
равны
и
.
Можно ли вписать данный многогранник в цилиндр? Если можно, то
выразите площадь боковой поверхности цилиндра через
и
.
Сформулируйте аналогичные задачи, используя данные, приведенные в
каждой строке таблицы 1, и решите их. Охарактеризуйте результат
каждой из построенных задач. Как Вы думаете, если в основании
многогранника будет лежать произвольный треугольник, можно ли его
вписать в цилиндр? Ответ обоснуйте.
Таблица 1.
№ |
BC |
AC |
AB |
S1 |
S2 |
Дополнительные данные |
1. |
3 |
- |
4 |
40 |
30 | |
2. |
3 |
7 |
9 |
90 |
30 | |
3. |
5 |
9 |
- |
- |
- |
Примечание к задаче 1. Данная задача соответствует следующим характеристическим особенностям компетентностной задачи:
- познавательная и профессиональная значимость получаемого результата (выводится формула нахождения площади боковой поверхности цилиндра через параметры многогранника, который вписан в этот цилиндр – формируется умение выводить формулы в общем виде и работать с ними; доказывается, что любую прямую треугольную призму можно вписать в прямой круговой цилиндр – это может быть использовано при решении других задач);
- условие задачи сформулировано как математическая ситуация, для разрешения которой используются знания, на которые нет явного указания в тексте задачи (например, из планиметрии, из алгебры - решение систем уравнений);
- данные в задаче представлены в различной форме (текст, рисунок, таблица).
Кроме того:
- задача нестандартная (требуется дополнительное исследование условия, самостоятельный отбор знаний, которые нужны для решения задачи, а также неизвестен способ решения задачи);
- наличие избыточных, недостающих или противоречивых данных в условии задачи, что приводит к объемной формулировке условия (в таблице приведены три различных случая, в которых предложены ситуации с избыточными, недостающими и противоречивыми данными);
Следовательно, в процессе работы с такой задачей развиваются следующие умения (являющиеся составной частью предметно-методической компетентности):
- предметные: выбор необходимых для решения знаний из разных разделов математики (планиметрия, стереометрия, алгебра), узнавание геометрического объекта и обоснование этого, путем применения определения и свойств многогранника), построение математической модели и работа с ней;
- межпредметные: вывод формул в общем виде и работа с ними, работа с текстом, таблицей, работа с информацией (анализ, поиск и др.);
- методические: поиск решения задачи, постановка вопросов к различным этапам решения, умение отличать компетентностные задачи от стандартных математических.
Анализ задачников по элементарной математике и другой литературы показал, что компетентностных задач недостаточно, поэтому нами были разработаны пути и способы конструирования таких задач (см. схему 2).
Сконструированная новая задача должна соответствовать определению компетентностной задачи и содержать в себе несколько отличительных особенностей, которые отличают ее от стандартных математических задач.
Необходимо научить студентов не только решать компетентностные задачи, но и обучить их методическим действиям со школьными задачами (отбор, построение, способы работы). Формированию этих умений у будущих учителей математики должны способствовать специальным образом составленные задания, которые мы будем называть методическими.
Методические задания – это такие задания, которые направлены на овладение приемами методической работы с предложенным математическим учебным содержанием (понятием, теоремой, задачей и т.д.).
В ходе экспериментов, а также бесед со студентами, учителями школ, преподавателями были выделены требования к методическим заданиям:
Открытость (задание может иметь несколько вариантов ответов; могут быть различные способы выполнения задания и имеется возможность переформулировки (изменения) задания, в зависимости от знаний и индивидуальных особенностей студента).
- Связь с практикой обучения математике в общеобразовательной школе (задания не должны быть «оторваны» от материала, который изучается в школьном курсе математики, что будет способствовать мотивации студентов, повторению школьного курса и подготовке к педагогической практике).
- Проблемность и новизна (задания формулируются как проблема, которую необходимо разрешить средствами конкретного предмета, способ выполнения задания студенту не известен или состоит из комбинации известных способов, что требует проявления творчества).
- Использование знаний из курса методики обучения математике (т.е. для выполнения заданий должны применяться уже имеющиеся знания из вузовского курса методики, а предлагаемые задания должны способствовать расширению методических умений).
Методические задания для работы с компетентностными задачами мы подразделяем на четыре категории:
Задания, которые предполагают работу до решения задачи. Задания направлены на формирование умений отличать компетентностные задачи от других математических, определять значимую цель решения задачи, анализировать предложенные ситуации, выделять типы и уровни сложности задач.
- Задания, связанные непосредственно с процессом решения задачи. Задания формируют умения: составлять план решения компетентностной задачи, ставить вопросы к каждому этапу решения, подбирать необходимые знания для решения задачи из разных разделов математики, других учебных предметов и областей знаний, составлять математическую модель предложенной ситуации, оценивать ситуацию.
- Задания, связанные с работой после решения задачи. Задания формируют умения: интерпретировать полученный результат, анализировать полученные решения и выбирать из них рациональное, делать выводы о применении метода решения к другим задачам и об использовании математических знаний для разрешения нематематических ситуаций.
- Задания, связанные с умением составлять компетентностные задачи. Задания формируют умения: подбирать под математическую задачу межпредметную или практическую ситуацию и наоборот, составлять компетентностные задачи разных типов и разных уровней сложности по предложенным алгоритмам, проверять является ли задача компетентностной на основании определения и отличительных особенностей компетентностной задачи, составлять компетентностные задачи для школьников самостоятельно и предлагать методику работы с этими задачами.
Приведем примеры методических заданий к компетентностным задачам:
№1. Опишите реальную ситуацию, в которой нужно было бы решить следующую математическую задачу: «Стороны равностороннего треугольника равны 3 м. Найдите расстояние до плоскости треугольника от точки, которая находится на расстоянии 2 м от каждой из его вершин».
№2. Опишите этапы решения следующей задачи: «Имеется бревно, длина которого 20 дм, а диаметры спилов 2 дм и 1 дм. Требуется вырубить из бревна брус с квадратными поперечными сечениями, ось которого совпадала бы с осью бревна так, чтобы количество отходов было наименьшим. Как это сделать?» С какими трудностями при решении Вы столкнулись? С чем они связаны? Целесообразно ли давать такую задачу школьникам (ответ обоснуйте)?
Подобные компетентностные задачи и методические задания к ним использовались нами на курсе по выбору «Компетентностные задачи по стереометрии», который был разработан для студентов 4 курса физико-математического факультета.
- Литература:
Компетентностный подход в педагогическом образовании: Коллективная монография / Под ред. Проф. В.А. Козырева, проф. Н.Ф. Радионовой и проф. А.П. Тряпициной. - СПб.: Изд-во РГПУ им. А.И. Герцена, 2005.-392с.
- Пономарчук О.С. Предметно-профессиональные задачи как составляющие предметной компетентности учителя математики // Проблемы теории и практики обучения математике: Сборник научных работ, представленных на международную научную конференцию « 59 Герценовские чтения» / Под ред. В.В. Орлова. – СПб.: Изд-во РГПУ им. А.И. Герцена, 2006. – 281с.
- Стефанова Н.Л. Понамарчук О.С. Составляющие предметной компетентности учителя математики // Академические чтения. – СПб.: Издательство СПбГИПСР, 2005. – Вып. 6: Компетентностный подход в современном образовании. – с.175-177.
- Харитонова О.В. Развитие учебно-познавательной компетентности старшеклассников на уроках геометрии. Дис. … канд. пед. наук. - СПб., 2006. – 167с.